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In this study, we investigate the dynamics of a freely rising and falling cylinder. This
is, in essence, a vortex-induced vibration (VIV) system comprising both transverse
(Y ) and streamwise (X) degrees-of-freedom (d.o.f.), but with zero spring stiffness
and zero damping. This problem represents a limiting case among studies in VIV,
and is an extension of recent research of elastically mounted bodies having very
low spring stiffness, as well as bodies with very low mass and damping. We find
that if the mass ratio (where m∗ = cylinder mass/displaced fluid mass) is greater
than a critical value, m∗

crit =0.545, the body falls or rises with a rectilinear trajectory.
As the mass ratio is reduced below m∗

crit = 0.545, the cylinder suddenly begins to
vibrate vigorously and periodically, with a 2P mode of vortex formation, as reported
in the preliminary study of Horowitz & Williamson (J. Fluids Struct. vol. 22, 2006,
pp. 837–843). The similarity in critical mass between freely rising and elastically
mounted bodies is unexpected, as it is known that the addition of streamwise vibration
can markedly affect the response and vortex formation in elastically mounted systems,
which would be expected to modify the critical mass. However, we show in this paper
that the similarity in vortex formation mode (2P) between the freely rising body and
the elastically mounted counterpart is consistent with a comparable phase of vortex
dynamics, strength of vortices, amplitudes and frequencies of motion and effective
added mass (CEA). All of these similarities result in comparable values of critical
mass. The principal fact that the 2P mode is observed for the freely rising body
is an interesting and consistent result; based on the previous VIV measurements,
this is the only mode out of the known set {2S, 2P, 2T} to yield negative effective
added mass (CEA < 0), which is a condition for vibration of a freely rising body.
In this paper, we deduce that there exists only one possible two degree-of-freedom
elastically mounted cylinder system, which can be used to predict the dynamics of
freely rising bodies. Because of the symmetry of the vortex wake, this system is
one for which the natural frequencies are fNX =2fNY . Although this seems clear in
retrospect, previous attempts to predict critical mass did not take this into account.
Implementing such an elastic system, we are able to predict vibration amplitudes and
critical mass (m∗

crit = 0.57) for a freely rising cylinder in reasonable agreement with
direct measurements for such a rising body, and even to predict the Lissajous figures
representing the streamwise–transverse vibrations for a rising body with very small
mass ratios (down to m∗ =0.06), unobtainable from our direct measurements.
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Figure 1. Trajectories of freely rising and falling cylinders. (a) m∗ = 1.99, Re = 9000; falling
cylinders descend rectilinearly. (b) m∗ = 0.78, Re = 5000; some rising cylinders can also move
with rectilinear trajectories. (c) m∗ =0.45, Re = 3800; a very light rising cylinder exhibits
vigorous vibration (A∗

Y = 1.0). It should be noted that the Y -axis of these trajectories is
significantly expanded relative to the X-axis, so that the non-periodic transient motions in
(a) and (b) are, in reality, extremely small. The trajectories in (b) and (c) appeared previously
in Horowitz & Williamson (2006).

1. Introduction
The problem of vortex-induced vibration (VIV) of cylinders free to move transverse

to a free stream has been well studied, and has been presented in a number of reviews
(e.g. Sarpkaya 1979; Bearman 1984; Parkinson 1989; Williamson & Govardhan 2004).
Regarding our central interest in this paper, the dynamics of rising and falling bodies
are relevant to a number of applications. In the case of a freely moving cylindrical
body, the question as to whether vibration occurs, and how it occurs, can be of
importance in studies of sediment transport, fluidization and other multiphase flows
(e.g Richardson & Zaki 1954; Stringham, Simons & Guy 1969; Hartman & Yates
1993), since vibration is known to increase drag as well as heat and mass transfer.

An earlier study of ours in a special issue related to a conference (Horowitz &
Williamson 2006) showed that the dynamics of rising and falling cylinders is strongly
influenced by the relative density of the body, or what we term here as the mass ratio,
m∗ (cylinder mass/displaced fluid mass). The main contribution of that work was to
determine the critical mass, below which a freely rising or falling body suddenly starts
to vibrate periodically at large amplitude, and also to present the vortex formation
mode responsible for the large periodic vibration of rising cylinders with sufficiently
low mass. The essential points from Horowitz & Williamson (2006) are represented
in figures 1 and 2 in this section (somewhat modified from the earlier paper). They
began their study with a falling body with mass ratio m∗ = 1.99. This cylinder, and all
other falling cylinders, descend with a straight vertical trajectory, a typical example
of which is shown in figure 1(a). By removing weight from the body, despite the fact
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Figure 2. A rising cylinder undergoing vibration (in this case m∗ = 0.45) exhibits the
highly periodic 2P vortex formation mode. Each of the plots is separated by an eighth
period, combining to show a half-cycle of oscillation. Contour levels are ωD/U =
±{0.40, 0.80, 1.20, . . .}. Re = 3800. The vorticity plot in (d ) was shown previously by
Horowitz & Williamson (2006).

that the body becomes buoyant, it can still move rectilinearly during its ascent, as
shown in figure 1(b) for m∗ = 0.78. However, by gradually removing mass from the
body, they reached a special value of the mass ratio when the body suddenly begins to
vibrate vigorously, exhibiting periodic oscillations. The remarkable periodicity of this
vibration is seen in figure 1(c), where even fine features of the motion, such as the small
kink near the centreline of the trajectory, are visible and highly repeatable in each
cycle. A compilation of such measurements in Horowitz & Williamson (2006) yielded
the effect of mass ratio on amplitude, demonstrating an abrupt jump between these
two states at a critical value m∗

crit =0.545. A more developed plot of amplitude versus
m∗ is presented later in this paper. They went on to uncover the vortex formation
mode for freely rising and vibrating bodies, at moderate Reynolds number, finding
it to be the 2P mode, comprising two vortex pairs generated per cycle, shown in
figure 2. Such a mode is classically found for certain branches of amplitude response
for elastically mounted bodies.

In addition to the inherent interest in rising and falling body problems, a freely
moving body also represents a special case of an elastically mounted VIV system
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with two degrees-of-freedom (d.o.f.), in which there is zero restoring force and zero
structural damping (which will be elaborated upon in § 2). In this paper, we will show
that by studying a freely rising cylinder, we may deduce the critical mass and dynamics
for elastically mounted systems, which would otherwise be difficult to measure using
the most conventional VIV experiments. To understand the relationship between these
two systems, we must first consider the dynamics of elastically mounted bodies.

In the case of an elastically mounted cylinder undergoing transverse VIV, when the
product of the system mass and damping (known as ‘mass-damping’) is low, three
distinct response branches are found as the normalized velocity U ∗ is increased. These
branches are the ‘Initial’ branch, the ‘Upper’ branch, where the highest amplitude of
vibration occurs, and the ‘Lower branch’, as defined by Khalak & Williamson (1999).
Examples of these different response branches are seen in figure 3. Each branch is
associated with a particular mode of vortex formation. (We define the normalized
velocity: U ∗ = U/fND, where U is the free-stream velocity, fN is the natural frequency
in water and D is the cylinder diameter). The initial branch exhibits a ‘2S’ wake
formation mode, employing the nomenclature introduced by Williamson & Roshko
(1988), where two single vortices are shed in each cycle of oscillation. The upper
and lower branches exhibit a 2P mode, where two vortex pairs are formed per cycle,
which is essentially the mode we found for a freely rising cylinder. For a cylinder
vibrating transversely with a sinusoidal motion, the resultant wake pattern depends
on the normalized amplitude and wavelength (or frequency) of the body motion, as
shown by Williamson & Roshko (1988), who mapped the possible wake modes in the
amplitude–wavelength plane. (Part of the map of these vortex formation regimes will
be found in figure 9.)

Of relevance to the present problem of rising and falling bodies are some previous
results concerning the effect of mass ratio (m∗ = mass/displaced fluid mass) on the
VIV of cylinders. Griffin & Ramberg (1982) and Khalak & Williamson (1999) have
shown that reducing the mass ratio increases the range of normalized velocity over
which large-amplitude synchronized response occurs. This is illustrated in figure 3
by amplitude response plots for different mass ratios, as a function of normalized
velocity U ∗, adapted from Govardhan & Williamson (2000). However, by employing
the most fundamental parameter (U ∗/f ∗)S, which is equivalent to fv0/f , the ratio
of the fixed-cylinder shedding frequency (fv0) to the actual oscillation frequency (f ),
Khalak & Williamson (1999) demonstrated that for low mass-damping, response data
at different mass ratios collapse well, so long as the mass-damping for the data sets is
the same (the frequency ratio, f ∗ and Strouhal number, S are defined in table 1). In
the case of the data for m∗ = 1.19 and 9.31, we find a good collapse of the response
data in figure 3(b). The ability to collapse response data at different mass ratios is
fortuitous in the case of Y -only cylinder vibration, although we shall see that such
collapse is not possible for VIV systems with two d.o.f., whose natural frequencies
are the same in both directions. We shall also find that predicting the critical mass
is essentially not possible on the basis of elastically mounted cylinder studies, whose
natural frequencies in the streamwise and transverse directions are the same.

Before proceeding further, we introduce an equation of motion used to represent
the VIV of a cylinder in the transverse direction. In this paper, we define the X

direction as parallel to the free stream, and the Y direction as normal to this flow.
Bodies able to vibrate with two d.o.f., are denoted as XY -cylinders throughout the
paper. The equations of motion used for a Y -cylinder may be written as

mÿ + cẏ + ky = FY (t), (1.1)



356 M. Horowitz and C. H. K. Williamson

5 10 15 200

0.5

1.0

1.5

A*

U*

m* = 0.52

m* = 1.19

m* = 9.31

(U*/f *) S = fv0/f

CEA = –0.533

CEA = –0.550

CEA = –0.278

CEA = –0.251

Initial

Upper

Lower

(a)

1.0 1.5 2.0 2.50.5
0

0.5

1.0

1.5

A*

(b)

Figure 3. Collapse of response data for Y -only cylinders with different mass ratios.
(a) Amplitude response at three different mass ratios, from Govardhan & Williamson (2000),
with additional unpublished data (from Govardhan & Williamson (2000)). As the mass ratio is
reduced, the width of the synchronized response regime increases. For a mass ratio m∗ = 0.52,
large-amplitude oscillations persist to the limit of their facility. �, m∗ =9.31; �, m∗ = 1.19; �,
m∗ =0.52. (b) Response data and CEA at different mass ratios collapse when plotted against
the normalized velocity (U ∗/f ∗)S.

where m is the total oscillating structural mass, c is the structural damping and k is
the spring stiffness. The displacement, y(t), and fluid force, FY (t), have generally, in
previous work, been found to be well represented by the sinusoidal functions:

y(t) = A sin(ωt), (1.2)

FY (t) = FY0 sin(ωt + φ), (1.3)
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Mass ratio m∗ m

πρD2L/4

Damping ratio ζ
c

4πfN (m + mA)

Equivalent damping ratio ζeq

c

4πfv0(m + mA)

Normalized velocity U ∗ U

fNY D

Amplitude ratios A∗
Y A∗

X

AY

D

AX

D

Frequency ratios f ∗
Y f ∗

X

fY

fNY

fX

fNX

Force coefficients CY CX

FY

1
2
ρU 2DL

FX

1
2
ρU 2DL

Effective added mass CEAY CEAX
CY cos φY

2π3A∗
Y

(
U ∗

f ∗
Y

)2
CX cos φX

2π3A∗
X

(
U ∗

f ∗
X

)2

Reynolds number Re
ρUD

µ

Table 1. Non-dimensional groups for an elastically mounted two degree-of-freedom cylinder
in VIV. The added mass, mA, is given by mA = CAmd , where md is the displaced fluid mass,
and CA is the potential added-mass coefficient (CA = 1.0 for a circular cylinder). In the above
groups, fN = still-water natural frequency, D = cylinder diameter, L = cylinder length, ρ =
fluid density, U = free-stream velocity, µ = viscosity. For simplicity, in various locations in
the text, the subscript ‘Y ’ may sometimes be omitted; in this case, the parameters are assumed
to be in the transverse direction.

where ω =2πf , with f being the oscillation frequency, and φ is the phase angle
between the fluid force and cylinder displacement. From equations (1.1)–(1.3), and
using the non-dimensional parameters defined in table 1, we derive expressions for
the amplitude and frequency of the cylinder response:

A∗ =
1

4π3

CY sinφ

(m∗ + CA)ζ

(
U ∗

f ∗

)2

f ∗, (1.4)

f ∗ =

√
m∗ + CA

m∗ + CEA

, (1.5)

where CA is the potential added mass coefficient (CA = 1.0 for a circular cylinder),
and CEA is an effective added mass coefficient proportional to the force, due to the
vortex dynamics, that is in phase with the body acceleration:

CEA =
CY cos φ

2π3A∗

(
U ∗

f ∗

)2

. (1.6)

Although the effect of the mass ratio on the width of the synchronization regime (in
a plot of response versus normalized velocity) has been observed before, Govardhan &
Williamson (2000) found that for a cylinder with very low mass, m∗ = 0.52, the
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synchronized large-amplitude response persisted beyond the maximum speed limits
of their facility, and appeared as if it would continue indefinitely, as may be seen
in figure 3(a). Using response data for a variety of cylinders with different mass
ratios, they deduced an equation for the oscillation frequency in the lower response
branch,

f ∗
lower =

√
m∗ + CA

m∗ − 0.54
. (1.7)

One may see immediately that this frequency equation suggests that for mass ratios
less than a certain critical value, m∗

crit = 0.54, the frequency ratio f ∗ is not defined.
Effectively this means that the lower branch of response cannot be reached and will
not exist. Instead, they predicted that large-amplitude synchronized vibration (on the
upper response branch) would occur over an infinitely wide regime of normalized
velocities (U ∗ → ∞), thus suggesting why the response at m∗ = 0.52 persists to high
velocities.

Subsequently, Govardhan & Williamson (2002) developed a simple experiment
that allowed them to determine the dynamics of a cylinder at infinite normalized
velocity, allowing the critical mass to be found directly. The natural frequency fN

of the system was set to zero by removing the springs (i.e. setting k = 0), resulting
in infinite U ∗ = U/fND. Under these conditions, by gradually removing mass from
the system, they accurately deduced that for mass ratios exceeding a critical value,
m∗

crit =0.542, the cylinder exhibited negligible vibration, but upon reaching this value,
the cylinder would suddenly begin to oscillate vigorously, in excellent agreement with
the predictions of a critical mass by Govardhan & Williamson (2000). These results
are directly relevant to the problem of rising and falling bodies we study here, as will
be seen later.

We shall now turn to the case of a cylinder vibrating in both the transverse (Y ) and
streamwise (X) directions, which arises in many practical cases of cylinders undergoing
VIV, such as riser tubes or heat exchangers. This is of relevance here, because our
freely rising and falling body can vibrate horizontally (Y ) and vertically (X) as it
travels through the fluid. One may note that the addition of a streamwise degree of
freedom might be expected to influence the fluid forces acting on the cylinder, which
determine the critical mass through the parameter CEA. This leads us to ask: does a
critical mass exist for an unrestrained cylinder in two d.o.f. – one for which there is
no stiffness or damping in both transverse and streamwise directions?

Despite the large amount of work on cylinders undergoing purely transverse VIV,
there have been relatively few studies that have considered the VIV of an elastically
mounted cylinder in two d.o.f. (in XY motion). Early studies of such XY cylinders were
performed by Moe & Wu (1990) and Sarpkaya (1995), but with different mass ratios
in the transverse and streamwise directions. The present work, however, will examine
only the case where the mass ratio is the same in both directions, corresponding to
most practical examples of XY systems.

Jauvtis & Williamson (2004) studied an elastically mounted XY cylinder using a
pendulum apparatus that allowed an identical oscillating mass and natural frequency
in both directions. They found that for mass ratios above m∗ = 6, the XY response
exhibited the same branches as the transverse-only case, with similar transverse
amplitudes, and very little streamwise motion. However, at lower mass ratios
(m∗ = 2.6–4, and possibly lower m∗), they found that the upper branch is replaced by
a ‘super-upper’ branch, characterized by very large amplitudes of around 3 diameters
peak-to-peak (A∗

Y ∼ 1.5) and a wake comprising two triplets of vortices formed in
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each cycle, defined as a ‘2T’ mode. (The super-upper response branch is included later
in figure 9b, along with the initial and lower branches from Jauvtis & Williamson
2004). The streamwise amplitudes in the super-upper branch are significant (A∗

X ∼ 0.3),
generating trajectories with a pronounced figure-of-eight or crescent shape, while in
the initial and lower branches the streamwise motion is much smaller (A∗

X ∼ 0.05). A
three-branch response with comparable peak amplitudes was found by Dahl, Hover &
Triantafyllou (2006) for a system with slightly different transverse and streamwise
mass ratios and fNX/fNY =1. Using controlled vibration, Jeon & Gharib (2001, 2004)
have shown that the vortex dynamics behind an XY cylinder are sensitive not only
to the streamwise amplitude, but also to the phase, θ , between the transverse and
streamwise oscillations. This is quite relevant to our results presented later.

The results of these studies indicate that the vortex formation modes and forces
exerted on a cylinder may be significantly affected by streamwise vibration, and
would be expected to impact the value of the critical mass. Interestingly, Jauvtis &
Williamson (2004), considering the lower branch frequency equation (defined in (1.7))
in the same manner as Govardhan & Williamson (2000), deduced a critical mass
of m∗

crit = 0.52, which is close to the value for a Y -only motion cylinder. Their
arrangement comprised a spring system giving the same natural frequencies in the X

and Y directions (fNX = fNY ). On the other hand, Aronsen (2007) performed a set of
XY controlled vibration experiments where he found very large −CEAY , from −1.5
to −7 in regions where fluid excitation is positive, and hence where free vibration is
expected to occur. This result suggests that the critical mass of an XY cylinder could
be an order of magnitude greater than predicted by Jauvtis & Williamson (2004) –
as high as m∗

crit =7. However, in § 2 of the present paper, we will show that such
predictions are not necessarily accurate, due to the fact that unlike the Y -only case,
the XY cylinder response does not collapse with mass-damping alone, but is also
affected independently by the mass ratio. Consequently, in order to predict a critical
mass using elastically mounted data, experiments (where fNX = fNY ) would need to
be performed at mass ratios close to the value of the critical mass itself (the work
of Jauvtis & Williamson 2004 was only able to reach a minimum mass of m∗ =2.6,
given their pendulum experimental arrangement); it cannot be predicted on the basis
of response plots for higher mass ratios, in the manner of Govardhan & Williamson
(2002).

Rather than set out to perform these elastically mounted experiments, we approach
the problem in a very different way. We shall use freely rising and falling bodies to
find the critical mass. In essence, we show in § 2 that freely rising and falling cylinders
are equivalent to a two-d.o.f. VIV cylinder with no restoring force in either direction
of motion. Of course, this trivial statement is obvious; however, this fact is pointed
out because it does allow us to determine accurately the critical mass that is applicable
to ‘restrained’ two-d.o.f. cylinders, just as we were able to do in the one-d.o.f. case
(Govardhan & Williamson 2002). This may seem like an obvious course to follow,
but it has not been done before, and neither has a link between rising and falling
bodies and elastically mounted experiments been made before (with the exception of
Horowitz & Williamson 2006).

Although there have been numerous studies of the dynamics of rising and falling
bodies, almost none have focused on circular cylinders. Most investigations have
considered spherical or ellipsoidal shapes, like bubbles (see the classic text by Clift,
Grace & Weber 1973, or the review of Magnaudet & Eames 2000), or solid spheres
(e.g. Jenny, Dušek & Bouchet 2004; Veldhuis et al. 2005; Horowitz & Williamson
2008, 2010). In addition, much of the work on cylindrical bodies has considered the
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case of disks or very flat cylinders, as in the studies of Willmarth, Hawk & Harvey
(1964) and Fernandes et al. (2007).

For cylinders with larger aspect ratios (L/D = length/diameter), experiments by
Marchildon, Clamen & Gauvin (1964), Jayaweera & Mason (1965), Isaacs & Thodos
(1967) and Stringham, Simons & Guy (1969) have shown that freely falling cylindrical
particles undergo pitching motions about the midpoint of their span over a wide range
of Reynolds numbers (Re =200–60 000). Jayaweera & Mason (1965) and Isaacs &
Thodos (1967) found that the amplitude of the pitching oscillations decreased as the
cylinder aspect ratio increased, so that sufficiently long cylinders fell steadily, without
pitching vibration.

In addition to pitching oscillations, additional types of motion have been observed.
For Re > 8000, Stringham et al. (1969) found a yawing oscillation about a vertical
axis through the centre of the cylinder that was superposed on the pitching motion,
while Marchildon et al. (1964) found periodic motion in a direction parallel to
the cylinder length that was synchronized with the pitching oscillations. Finally, at
low Reynolds numbers there are some studies of freely falling cylinders, some of
which are related to sedimentation. Feng, Hu & Joseph (1994) and Hu (1995) have
studied falling cylinders, finding that they sometimes move quite periodically, but
can also fall with irregular, non-periodic lateral motion, depending on Re and wall
effects.

The types of pitching, yawing or surging dynamics for free cylinders at moderate
Re, mentioned above, are not observed in our experiments, where we have restrained
our cylinder between a set of false walls, with a narrow gap between each wall and
the ends of the cylinder. This ensures that the cylinder remains horizontal (without
pitching) and without motion parallel to the longitudinal axis. No previous studies
exist, to our knowledge, concerning free cylindrical bodies under such conditions (with
the exception of a preliminary paper Horowitz & Williamson 2006). As stated earlier,
this problem is a limiting case of classical VIV studies for cylinders, and represents
the case of a two degree-of-freedom elastically mounted XY cylinder, in the limit of
zero spring stiffness in both the X and Y directions.

We shall show in § 2, that the freely vibrating cylinder, under the effect of a net
buoyancy force, is directly equivalent to a two-d.o.f. (XY ) cylinder, whose spring
stiffness and damping have been removed. This will allow us to determine conditions
for vibration of a freely rising or falling body, and provides a means to determine
the critical mass for an XY system. Details concerning our experimental approach
are given in § 3. A preliminary paper (Horowitz & Williamson 2006) showed that
the critical mass for the rising cylinder, is given as: m∗

crit = 0.545, and that the large-
amplitude vibration below this mass, was associated with the 2P mode of vortex
formation. In § 4, we indicate that the critical mass is similar to the critical mass
for a Y -only elastically mounted cylinder, at comparable Reynolds numbers, despite
the presence of streamwise vibration. We present regimes of vibration or straightline
trajectories for rising or falling cylinders in the plane of m∗ versus Galileo number,
or m∗ versus Reynolds number.

In § 5, we find that the similarity in vortex formation mode, namely the 2P mode,
between the freely rising body and the corresponding elastically mounted case (with
Y motion only), is consistent with a comparable phase of vortex dynamics and vortex
strengths, as well as comparable amplitudes and frequencies of transverse motion.
Finally, we find a similar effective added mass (CEA). All of these similarities result in
comparable values of critical mass. Compared with elastically mounted XY cylinders,
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freely rising cylinders exhibit larger streamwise amplitudes, and markedly different
phase between streamwise and transverse motion. In § 6, we employ a special case
of an elastically mounted XY cylinder arrangement. It is remarkable that in fact,
such an elastically mounted system, where the natural frequencies in the X and
Y directions are related by fNX = 2fNY , is equivalent to a freely rising and falling
cylinder experiment, and we may therefore use such a system to predict rising and
falling dynamics, over a range of mass ratios, down to values not physically possible
with our experimental facilities. In retrospect, such an approach may seem essential,
but past efforts to determine critical mass for two d.o.f., did not take such a required
frequency ratio into account This is discussed, along with predictions that are quite
comparable to the freely rising body, in § 6. Conclusions are presented in § 7.

2. Predicting critical mass using elastically mounted cylinders
In their elastically mounted experiments, Govardhan & Williamson (2000) were able

to predict the critical mass for a cylinder under transverse-only motion, which was in
excellent agreement with the value measured directly for cylinders with no restoring
force (Govardhan & Williamson 2002). These elastically mounted experiments can
be implemented to successfully make such predictions, even if the critical mass is
distinctly below the mass ratio used in the elastically mounted set-up. To understand
this fact, it is necessary to consider the cylinder response in the frequency–amplitude
plane, where there is a collapse of response data for constant values of mass-damping;
i.e. there is no independent variation of the response plot with variation of mass (over
the wide range of mass-damping values studied in Khalak & Williamson 1999;
Govardhan & Williamson 2000). We shall further explain that the same predictive
procedure is not possible for a system with two d.o.f., where fNX = fNY , because the
response in this case is indeed affected by independent variation of mass ratios. In
essence, to find the critical mass for an XY cylinder, one has to actually conduct an
experiment very close to what in hindsight turns out to be the critical mass.

The response of a system with a particular mass ratio and damping, and no
restoring force, corresponds to a single point in the frequency–amplitude {fv0/f, A∗}
plane, which we refer to as the ‘operating point’ of the system, in this paper. To show
how the operating point is determined, we consider the equation of motion for a
cylinder vibrating without springs. With k = 0, the amplitude and frequency equations
(1.4)–(1.5) become

A∗ =
CY sin φ

4π3(m∗ + CA)ζeq

(
fv0

f

)
1

S2
, (2.1)

m∗ + CEA = 0. (2.2)

The operating point for a system with a given mass (m∗) and damping (ζ ) is the
point in the {fv0/f, A∗} plane that is a solution to both equations (2.1) and (2.2). As
an example, we consider the case of a system with zero damping, shown schematically
in figure 4. For zero damping, the amplitude equation is satisfied on a contour in the
frequency–amplitude {fv0/f, A∗} plane where the fluid excitation is zero, CY sinφ = 0.
This ‘zero-excitation contour’ may be determined using controlled vibration data
sets, such as those of Hover, Techet & Triantafyllou (1998) or Morse & Williamson
(2009b,c), and is also represented very closely by the response data of a cylinder
undergoing free vibration at low mass-damping. An operating point exists if the
frequency equation, CEA = −m∗, is satisfied somewhere on the zero-excitation contour,
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fv0/f

A*

AY
*

–0.2

–0.3

–0.53
–0.54

–0.6–0.55

No possible solutions

CEA = 0

Possible solutions

CEA > 0

CEA < 0

m* = 4

CEAY = 1.0
CEAX = –2.75

CEAY = 0
CEAX = –3

CEAY = 2
CEAX = –2.5

CEAY = –0.52
CEAX = –3.130

CEAY = –0.53
CEAX = –3.133

(b)

(a)

Figure 4. (a) Schematic showing operating points for the Y -only cylinder, which correspond
to different values of CEA on the zero-excitation contour. —, CEA < 0, operating points exist;
- - -, CEA > 0, no operating points can exist; , examples of possible operating points.
(b) Predicting operating points for cylinders with two d.o.f. Schematic of a typical
zero-excitation contour for an XY cylinder with mass ratio m∗ =4, based on data from
Jauvtis & Williamson (2004). Pairs of (CEAY , CEAX ) are shown at various locations (�), along
with the shape of the corresponding Lissajous figures showing the shape of the XY motion.
No possible operating points exist.
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since both equations (2.1) and (2.2) must be satisfied together. Since m∗ is positive, this
can only occur where CEA is negative. For typical values of CEA from experimental
data, schematically shown in figure 4, vibration of an unrestrained cylinder will occur
for mass ratios up to m∗

crit = [−CEA]max = 0.54. For heavier bodies, m∗ >m∗
crit , no

solutions are found to yield a significant and periodic response amplitude.
We recall from figure 3(a) that decreasing the mass ratio for an elastically mounted

Y -cylinder dramatically increases the regime of U ∗ over which large-amplitude
vibration occurs. We see in figure 3(b) that by replotting the data with the parameter
(U ∗/f ∗)S = fv0/f , there is a good collapse of the response for constant mass-damping.
As shown from the two pairs of CEA data in figure 3(b), not only is the amplitude
collapsed but also the values of effective added mass, CEA. If however, the response
plot shape were to change as mass is independently varied, then one could not predict
values of amplitude or −CEA accurately, even if mass-damping is kept constant. This
is the case with the two-d.o.f. XY motion (with fNX = fNY ), where below about m∗ = 6,
mass independently changes the observed response branches (Jauvtis & Williamson
2004), and thereby also changes the values of −CEA yielding the critical mass.

Vibration studies for bodies in XY motion have shown that the freedom to vibrate
in the streamwise direction can have a significant effect on the response, and on the
vortex dynamics of the system, which could profoundly affect the critical mass. We
may set out to find the critical mass for an XY cylinder using response data from
existing XY experiments to predict operating points, following the same predictive
procedure as for the transverse-only cylinder. If the system has no restoring force in
both the X and Y directions, and no damping, we find

CY sinφY = CX sinφX = 0, (2.3)

CEAY = CEAX = −m∗, (2.4)

where CY , CX , CEAY and CEAX are defined in table 1.
These equations may be used to determine operating points in the plane of

amplitude A∗ and frequency fv0/f . In figure 4(b), we consider a schematic of an XY

response with m∗ =4 and zero damping, based on data from Jauvtis & Williamson
(2004), where fNX = fNY . Immediately one notes that nowhere are there matching
values of CEAX and CEAY – they are markedly dissimilar throughout the response
plot, thus the data for m∗ =4 suggest that no critical mass may be found. However,
in the XY case, the response is indeed influenced independently by the variation of
mass; a different response plot shape emerges with each change of mass ratio m∗, and
therefore there is the possibility that at some small enough mass, CEAX = CEAY < 0 will
arise somewhere on the response plot to yield operating points for an unrestrained
cylinder and also a value of the critical mass.

We now show that a single set of response data, even at very low mass ratios, can
never be used to predict the critical mass. For an elastically mounted system with
fNX = fNY , CEAX and CEAY are related according to

CEAX = 1
4
CEAY − 3

4
(m∗). (2.5)

This relation, derived from the frequency equations in the X and Y directions, depends
explicitly on the mass ratio of the system. Therefore, as a direct result of the equations
of motion, one would not expect collapse of CEAX and CEAY over any range of mass
ratios, and no single set of response data could be used to predict a critical mass. At
most, one elastically mounted response plot could predict a single operating point,
while estimating a critical mass would require knowledge of all operating points. The
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one operating point would occur where (2.5) satisfies CEAX = CEAY . This can only
happen if CEAX =CEAY = −m∗, so, as expected, a set of elastically mounted response
data at one mass ratio cannot provide information about an unrestrained body at
any other mass ratio.

The requirement that CEAX = CEAY at an operating point is the cause of the
wide variation in reported critical mass values for an XY cylinder, ranging from
m∗

crit =0.52 to m∗
crit = 7. As discussed above, response data from Jauvtis & Williamson

(2004) do not contain any points where CEAX = CEAY , and cannot predict the critical
mass. Likewise, Aronsen (2007) had the same misconception in his predictions using
controlled vibration experiments, finding high values of −CEAY =1.5–7 in regions of
positive energy transfer from the fluid to the body. However, because his lowest value
of CEAX was −0.2, the motions generating these very large negative CEAY could not
have corresponded to operating points of an unrestrained body.

Since we are interested in the behaviour at infinite normalized velocity U ∗, one may
consider removing the spring stiffness from the system (giving k = 0). In this manner,
the critical mass could be measured directly. For a two-d.o.f. (XY ) system this would
mean not only removing the springs in the transverse direction (as implemented by
Govardhan & Williamson 2002) but also removing the springs in the streamwise
direction. This is simply not possible, because the springs in the streamwise direction
are essential to provide a mean force (proportional to the mean spring deflection, x̄)
to balance the mean drag, F̄X , according to kx̄ = F̄X . Without this force, the cylinder
would get carried off downstream with the flow! In the case of a freely rising cylinder,
there exists such a mean force, namely, the net buoyancy, |B − W |, which is equal
to the mean drag: |B − W | = F̄X . Consequently, the freely rising and falling body is
equivalent to the two-degree-of-freedom system, but with no damping and no spring
stiffness. Of course, this could be seen as a trivial statement, in retrospect, but in fact
this case is relevant to restrained bodies, in that it yields directly the critical mass for
such elastically mounted bodies.

3. Experimental details
Our rising and falling cylinder experiments are performed in a vertical tank, shown

schematically in figure 5. This experimental arrangement has also been described
in Horowitz & Williamson (2006), where some preliminary results were shown. The
tank has dimensions 0.4 m × 0.4m × 1.5 m, and is filled with water with a kinematic
viscosity ν = 0.95 × 10−6 ± 0.02 × 10−6 m2 s−1. A set of vertical false transparent
walls are placed inside the tank, aligned to be precisely parallel to each other. The
cylinder, with diameter, D = 1.91 cm or D = 2.54 cm, and length, L = 35.3 cm, is placed
horizontally to span the full width between the false walls (allowing a small gap of
the order of 10−3 m on either side). This enabled motion in transverse and streamwise
directions, but without pitching or movement in the direction of the cylinder axis.
Any tendency for the cylinder to pitch occurred only immediately after its release,
prior to it reaching its steady state motion. The close proximity to the walls ensured
that such nascent pitching motions were not allowed to grow, resulting in steady-state
motion in the X and Y directions only. The gap did not affect the cylinder dynamics,
provided that the cylinder is launched with reasonable care, as described below, to
prevent rubbing against the false walls.

Buoyant cylinders are held in place at the bottom of the tank using a rubber-coated
hook and electromagnets. The hook would hold the cylinder after its insertion in the
tank, while the water settled for around an hour. Several minutes before running
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Figure 5. Schematic of the experimental facility, shown in a view normal to the length of the
cylinder (a) and along the length of the cylinder (b).

an experiment, the hook was removed, and the electromagnets were used to hold
the cylinder before its release. This allowed for a smoother launch of the cylinder
than could be achieved using the hook alone. The magnets were not used for longer
durations, as they heated up slightly after some minutes, possibly causing small local
convection currents in the tank that could have affected initial transient dynamics.
For falling cylinders, the launching apparatus could be inverted and placed at the top
of the tank. The cylinder used in this study is hollow, and empty of water, allowing its
mass ratio to be altered by adding or removing a number of small weights centrally
placed within its interior. The added weight was carefully distributed symmetrically
around the cylinder’s longitudinal axis, and symmetrically with respect to the centre
of the span. After adding weight, the cylinder was sealed with flat-faced, watertight
endcaps. Trajectories were obtained by recording the cylinder motion at 30 Hz using a
CCD camera and extracting the displacement from the individual frames. The range
of Reynolds numbers for these experiments was between 3800 and 9000.

To perform digital particle image velocimetry (DPIV), the flow was seeded with
14-micron silver coated glass spheres, which were illuminated by a thin light sheet
from a 5 W continuous argon ion laser. Image pairs were acquired at 30 frame s−1

using a Kodak Megaplus CCD camera (1008 × 1018 pixels), and analysed using
cross-correlation of subimages, with a two-step windowing process incorporating
window shifting to determine particle displacements, and in turn, velocity fields.
For the first correlation, interrogation windows of 64 × 64 pixels were used, with
32 × 32 pixel windows for the second correlation. Typical velocity fields comprised
60 × 60 velocity vectors, using a window overlap of 38 % in the second correlation.
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The viewing area of the camera was 25.5 cm × 25.8 cm, with a corresponding time
between images of 10 ms. The resulting vorticity fields were phase averaged over
approximately 10 cycles from different experimental runs using the cylinder position
as a reference, in order to remove small-scale turbulent fluctuations, but preserve the
large-scale periodic structures. Further details pertaining to our implementation of
the cross-correlation technique and to the level of particle seeding may be found in
Govardhan & Williamson (2000).

The coordinate system is defined such that the transverse (Y ) axis is horizontal
and perpendicular to the cylinder’s longitudinal (Z) axis, which is also horizontal, as
shown in figure 5. The vertical streamwise (X) axis is positive in the direction opposite
the mean velocity (upwards if falling, downwards if rising), so that in a reference
frame moving at the mean velocity of the cylinder, positive X corresponds to the
downstream direction. This ensures that the coordinate system is in accordance with
convention for elastically mounted VIV experiments.

4. Critical mass for a freely rising XY cylinder
In the introduction, we presented a principal result coming from the preliminary

paper by Horowitz & Williamson (2006), where it was shown that the critical mass for
a rising or falling cylinder is close to 0.545. The Lissajous figures in figure 6, show very
clearly the contrast in unsteady motion before the critical mass is reached (m∗ = 0.78),
and after the mass falls below this special value (m∗ = 0.45). In addition to the large
transverse amplitude (A∗

Y ∼ 1.0) of the trajectory, the Lissajous plot for m∗ = 0.45
shows substantial streamwise motion with an amplitude (A∗

X ∼ 0.3). This streamwise
vibration yields a figure-of-eight shape, in which the cylinder moves upstream as it
reaches the peaks of its transverse motion. Figures 6(a) and 6(b) are plotted to the
same scale to emphasize the striking change in the dynamics as the special critical
mass is reached.

In studies of rising and falling bodies, it is common to characterize the system
using the mass ratio, m∗, and the Galileo number, Ga =

√
|m∗ − 1|gD3/ν (Jenny et al.

2004). These quantities depend only on known parameters of the fluid and the body,
and are independent of the resulting dynamics. In our experiments, as the masses of
two cylinders (D = 1.91, 2.54 cm) were changed, the Galileo number would also vary
as shown in figure 7(a). For each diameter, the mass ratio and Galileo number follow
a curve in the {Ga, m∗} plane, which may readily be determined from the definition
of the Galileo number, where the values of the diameter, viscosity and gravity are
held constant. For both cylinders, a jump from rectilinear motion (shown by open
symbols) to periodic vibration (solid symbols) occurs when the mass ratio falls below
m∗

crit =0.545 ± 0.01. This value of the critical mass appears to be valid in the range
of Galileo numbers Ga ≈ 5000–9000. The jump change in the dynamics is related to
other studies, such as that by Jenny et al. (2004), and Horowitz & Williamson (2010),
where in both cases, a critical relative density governs the regimes of vibration, for
fixed Galileo number.

Since the Galileo number is undefined for elastically mounted systems, to which
we wish to make comparisons, we also present our results in terms of the mass ratio
and Reynolds number (figure 7b). The Reynolds number and the Galileo number are
easily related through the drag coefficient CD , according to CD = (π/2)(Ga/Re)2, for
a cylinder.

The abrupt changes in dynamics we observe for rising cylinders are a phenomenon
that has also been found in other studies of rising and falling bodies. In the case of
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Figure 6. Lissajous figures for freely rising and falling cylinders. (a) m∗ = 0.78, Re = 5000;
cylinders with rectilinear trajectories show only small non-periodic motion in both transverse
and streamwise directions. (b) m∗ =0.45, Re = 3800; rising cylinders vibrating in the transverse
direction also exhibit significant streamwise oscillations (A∗

X ≈ 0.3), producing a figure-of-eight
shape.

spheres, for example, they have been observed by Jenny et al. (2004), and over a wide
range of mass ratios and Galileo numbers by Horowitz & Williamson (2010). For
other shapes, such as bubbles or short cylinders, the transitions in regimes of motion
may also depend on the aspect ratio of the body (Mougin & Magnaudet 2002; Ern
et al. 2007).

In the present study, the abrupt jump between the vibrating and rectilinear regimes
of motion at the critical mass is illustrated by measurements of the amplitude as
a function of the mass ratio, shown in figure 8, a subset of which appeared in
Horowitz & Williamson (2006). This jump is evident in both the Y and X amplitudes,
and for both cylinder diameters studied.

This critical mass for the rising and falling cylinder is remarkably close to the
value found by Govardhan & Williamson (2002) for a Y -only cylinder, m∗

crit = 0.542,
despite the significant amount of streamwise motion that is observed in the present
experiments. However, we should note that the Y -only cylinder experiments are
conducted at a Reynolds number, Re =22 000, whereas the present study near the
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Figure 7. Rising cylinder dynamics in the (a) {Ga, m∗} and (b) {Re, m∗} planes. The cylinder
dynamics jump from a rectilinear regime to large-amplitude vibration as m∗ =0.545 is crossed.
�, periodic vibration, D = 1.91 cm; �, rectilinear motion, D =1.91 cm; �, periodic vibration,
D = 2.54 cm; �, rectilinear motion, D = 2.54 cm. The curves in (a) are determined from the
definition of the Galileo number, for constant cylinder diameter and fluid properties.
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Figure 8. Existence of a critical mass for a rising cylinder. A sudden jump in the transverse
and streamwise amplitudes occurs as the mass of the rising cylinder is reduced below a critical
value of m∗

crit = 0.545. Time histories of X and Y displacement are plotted for mass ratios
m∗ = 0.45 and 0.78, showing the dramatic difference in the dynamics above and below the
critical mass. �, �, D =1.91 cm; �, �, D = 2.54 cm.

jump in amplitude in figure 8 is for Re = 5000. The work of Morse & Williamson
(2009a) shows that the critical mass for a Y -only cylinder is influenced by Reynolds
number; at Re = 5000, they find m∗

crit =0.4. This is still reasonably similar to the
critical mass found here for the rising cylinder, and we discuss these similarities later.
We shall now characterize the dynamics of the rising body by examining its operating
points and the corresponding modes of vortex formation.

5. Comparison between freely rising cylinders and elastically mounted cylinders
We plot the operating points for the rising cylinder in the frequency–amplitude

{fv0/f, A∗
Y } plane in figure 9(a). At the highest mass ratios, the oscillations are

desynchronized and almost negligible, occurring at a frequency equal to the vortex
shedding frequency for a stationary cylinder (fv0/f = 1). As the mass ratio is reduced,
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Figure 9. (a) Here we compare our operating point with the Williamson & Roshko (1988)
map of wake modes (—) for an elastically mounted Y -only cylinder. We show the location
of the operating point in the frequency–amplitude plane as m∗ is decreased. For the highest
mass ratios, the oscillations are desynchronized and almost negligible, while for mass ratios
slightly above the critical value, small non-periodic oscillations occur. Below the critical
mass, there is periodic vibration at high amplitude (A∗

Y ∼ 1). (b) When compared with the
elastically mounted XY cylinder, the operating point of the vibrating rising cylinder lies
near the super-upper branch of response. �, rising cylinder, D = 1.91 cm; �, rising cylinder,
D = 2.54 cm; �, elastically mounted XY cylinder (Jauvtis & Williamson 2004).

but still slightly larger than the critical value, the cylinder undergoes low-amplitude
non-periodic oscillations at about half the stationary shedding frequency. When the
mass is reduced below the critical value, the sudden appearance of large-amplitude
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periodic oscillations is accompanied by a jump in the frequency, placing the operating
point at the centre of our plot in the amplitude–frequency plane in figure 9(a). On
the basis of the wake dynamics for one d.o.f. Y -only cylinders, in the Williamson–
Roshko map of regimes, this would suggest the presence of the 2P mode of vortex
formation.

On the other hand, in figure 9(b), we see that the jump to periodic motion
of the body places the operating point near the super-upper branch for an
elastically mounted two degree-of-freedom XY cylinder. Given their close proximity,
it is tempting to suggest that the freely rising cylinder might share some of the
characteristics of the super-upper branch, found by Jauvtis & Williamson (2004),
such as a 2T mode of vortex formation (comprising 2 vortex triplets per half cycle).

The operating points in figure 9 are plotted in the {fv0/f, A∗
Y } plane, and do not

show the effect of streamwise motion or the phase angle. Lissajous plots of the rising
cylinder as compared with an elastically mounted cylinder in the super-upper branch,
shown in figures 10(a) and 10(b), reveal a marked difference: while the rising cylinder
moves upstream at the transverse extrema of its motion, the elastically mounted
cylinder moves downstream. This is equivalent to the two cases having the opposite
phase between transverse and streamwise motion, with θ = 45◦ for the rising cylinder,
and θ = 225◦ in the super-upper branch for the elastically mounted body. Judging by
these results, one must suspect that the vortex dynamics will be quite different from
the (XY ) elastically mounted bodies.

At mass ratios above the critical value, where its trajectory is rectilinear, the cylinder
exhibits a 2S mode of vortex formation, in the form of a Kármán street, as one might
expect (Horowitz & Williamson 2006). On the other hand, the vibrating rising cylinder
exhibits a classic 2P mode of vortex formation, comprising a pair of vortices each half
cycle, shown in figure 2. The 2P mode is commonly found for cylinders constrained
to move only transversely to the flow, and it is perhaps surprising to find this mode
for a motion exhibiting significant streamwise vibration.

One may question how an XY system with significant streamwise motion is able to
yield a similar critical mass (0.545) to that value found for bodies in transverse-only
Y motion (0.4). We recall that in order for vibration to exist for a cylinder with
zero damping and no restoring force, the following conditions must be satisfied:
CY sin φ = 0, and CEA = −m∗. The second condition requires that cos φ < 0 , which
corresponds to φ =180◦ for zero damping.

On the basis of previous free vibration experiments for both Y -only and XY

cylinders, each vortex pattern is associated with a positive or negative effective added
mass (CEA), as follows:

2S Mode → CEA > 0,
2P Mode → CEA > 0, or CEA < 0,
2T Mode → CEA > 0.

The existence of our vibration mode for the rising body is consistent with the fact
that it exhibits the 2P mode, yielding CEA < 0, corresponding to a positive cylinder
mass. On the other hand, had the vortex pattern been the 2S or the 2T mode, we
would find CEA > 0, and vibration would not ensue. The above results suggest that,
out of our set of modes {2S, 2P, 2T}, the 2P mode of vortex formation is the only
vortex mode capable of causing VIV for a freely rising body! Of course, this does
not preclude the existence of another mode, as yet undiscovered, causing vibrations
of a rising cylinder.

For both the elastically mounted Y cylinder and the rising cylinder, the vortex
modes are nearly identical (see figure 11), despite the presence of significant streamwise
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Figure 10. Lissajous figures and phase angles, θ , between X and Y motion. (a) Elastically
mounted XY cylinder: fNX = fNY , θ = 225◦. (b) Freely rising cylinder: m∗ = 0.45, θ = 45◦.
(c) Elastically mounted XY cylinder: fNX = 2fNY , θ = −25◦, corresponding to an equivalent
rising cylinder with m∗ = −CEA = 0.48.

motion for the rising body. Interestingly, one notes that the phase of vortex formation
is also quite similar, which is consistent with a similar phase of vortex-induced force,
capable of sustaining vibration. Measurement of the circulation strength of the
vortices (at the instant when an entire shear layer of one sign is about to be shed,
as in figure 11), yields Γ ∗ = Γ/UD ∼ 3.1 for the stronger vortex in each pair, and
Γ ∗ ∼ 1.7 for the weaker vortex in the pair. These strengths are similar to those found
by Govardhan & Williamson (2000) for the 2P mode for an elastically mounted



Vortex-induced vibration of a rising and falling cylinder 373

0

2

4

6

X
/D

t/T = 0.25 t/T = 0.25

–4 –2 0 2 4

Y/D
–4 –2 0 2 4

Y/D

(a) (b)

Figure 11. The 2P modes for (a) an elastically mounted Y -only cylinder, A∗
X = 0, fv0/f = 1.25

and (b) a freely rising cylinder, A∗
X =0.32, fv0/f = 1.55. Although the rising cylinder has a

significant streamwise amplitude, the vortex pattern is nearly unchanged from the Y -only case.

cylinder in the lower branch of response, corresponding to critical mass conditions
for a Y -only cylinder (in which case, Γ ∗ ∼ 2.9 and Γ ∗ ∼ 1.6).

We may compute the force on the cylinder from a full knowledge of the body
dynamics, employing the amplitude and frequency equations, following Khalak &
Williamson (1999). For the rising cylinder, with zero stiffness and zero damping, the
phase is φ = 180◦ and the force is simply

CY = −CEA

2π3A∗

(U ∗/f ∗)2
, (5.1)

where CEA is known to be negative from the frequency equation, m∗ + CEA = 0.
This analysis assumes that the force and the displacement are sinusoidal, yet the

time history of the transverse displacement shown in figure 12(a) contains components
at higher frequencies, giving it a more sawtoothed shape. The effect of these higher
frequencies on the force have been analysed by expressing the displacement using
a Fourier series, as outlined the Appendix. The first 9 components of the Fourier
series for the displacement have been used to construct the transverse force on the
rising cylinder, shown in figure 12(b). The position spectrum in figure 12(c) shows
that the two most significant frequencies are the f and 3f components, which appear
prominently in the time history of the force. Such a 3f component has been found
for other XY systems undergoing vibration (Jauvtis & Williamson 2004; Dahl et al.
2007). The 3f component of force is of comparable magnitude to the force at the
fundamental frequency. However, it is the value of the effective added mass based on
the fundamental frequency component of the force that will yield the critical mass,
and the jump to large-amplitude vibration.

Comparisons of force magnitudes at the fundamental frequency (f ) for the rising
cylinder and for the Y -only cylinder indicate that similar values of critical mass are
consistent with the similar values of amplitudes, frequencies and forces found between
the two cases, despite the differences in the streamwise motion. Finally we comment
on the almost identical critical mass for the rising body found here, as compared
with the values found by Morse & Williamson (2009a) for high Reynolds number
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Experiment Re Reference m∗ CEA A∗ U ∗/f ∗ CY

Rising cylinder 4000 Present study 0.540 −0.540 0.82 6.86 0.58
Y -only cylinder, 10 000 Govardhan & 1.19 −0.551 0.68 6.15 0.62

elastically mounted Williamson (2000)

Table 2. Force estimates from equations of motion for the rising cylinder and the elastically
mounted, Y -only cylinder at similar A∗ and U ∗/f ∗. When the rising cylinder is compared to
an elastically mounted body at Re = 10 000, for which the critical mass is similar, there is good
agreement between the forces.
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Figure 12. The non-sinusoidal shapes of the transverse displacement (a) and force (b) over
a cycle are due to their 3f components, the strength of which is shown by the displacement
spectrum (c). —, entire signal, including 3f component; - - -, fundamental frequency only.

(Re > 9000). In table 2, we show some of the parameter values that together yield
the m∗

crit = 0.54 for both the rising cylinder and the Y -motion cylinder at Re =10 000
from Govardhan & Williamson (2000). One of the parameters which seems to ensure
agreement in the critical mass is the magnitude of the transverse force, which in turn
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is related to the dynamics of the vortices and the strength of these vortices, all of
which are quite similar for these two cases. Beyond noting the similarities in the vortex
dynamics and induced forces above, it appears to be a coincidence that the rising
body system, with its significant streamwise motion, yields comparable dynamics and
forces sufficient to ensure such a good agreement in the critical mass.

6. Employing a special case of a two degree-of-freedom elastically mounted
system to predict dynamics of rising or falling bodies

We have seen that it is not generally possible to use elastically mounted response
data for an XY cylinder to determine the motion of an unrestrained body. Neither
the approach of Jauvtis & Williamson (2004), where the natural frequencies in the
streamwise and transverse directions are the same, nor that of Aronsen (2007), can be
used to properly predict conditions at lower mass ratios, thereby to find the critical
mass.

However, we now ask: is there any special case that can allow the motion of an
unrestrained (rising) cylinder to be predicted from an elastically mounted response?
For such a prediction to be possible, it is necessary that the amplitude and frequency
response plots of elastically mounted systems collapse for different mass ratios. But,
for the elastically mounted system we considered in § 2, the collapse of response data
is not expected. We note that to make predictions of an unrestrained system, we must
have CEAX =CEAY .

By examining the frequency equations, we may deduce a method of satisfying
CEAX = CEAY everywhere on an elastically mounted response. Then, each point on
the response plot where the effective added mass is negative would correspond to
the motion of an unrestrained cylinder with mass m∗ = −CEAY = −CEAX . Since the
frequencies of an XY system are given by

f ∗
Y =

√
m∗ + CA

m∗ + CEAY

, f ∗
X =

√
m∗ + CA

m∗ + CEAX

, (6.1)

it is clear that CEAY and CEAX can only be equal if f ∗
X = f ∗

Y . Recalling that the
oscillation frequencies are related by fX = 2fY , due to the symmetry of the forcing,
we conclude that f ∗

X = f ∗
Y will occur only when the streamwise natural frequency is

twice the transverse natural frequency. In short, the system with natural frequencies
arranged to be fNX = 2fNY , can predict the motions of unrestrained bodies at all mass
ratios! Moreover, unlike the case with the same natural frequency in both directions,
the response of systems with fNX = 2fNY is expected to collapse for all mass ratios,
provided that the mass-damping is close to zero.

Using the experimental apparatus described in Jauvtis & Williamson (2004), we
performed experiments with a natural frequency ratio fNX/fNY = 2.01, for a mass
ratio m∗ = 4.28, and very low mass-damping, (m∗ + CA)ζ = 0.021. The amplitude
response of this system, shown in figure 13, exhibits three branches. An initial branch
occurs over a very narrow range of flow velocities, corresponding to U ∗ =3.7–4.0.
This range of normalized velocity is small enough that a fine resolution in normalized
velocity is needed to depict it accurately. From the initial branch to the upper branch,
the amplitude drops before increasing again, producing a response with two peaks,
the highest with an amplitude A∗

Y ∼ 1.0 occurring at Re =5300. Such a two-peaked
response is qualitatively similar to the observations of Dahl et al. (2006) in experiments
with a similar natural frequency ratio, fNX/fNY = 1.9. The upper branch also features
a streamwise amplitude, up to A∗

X =0.35, which is not insignificant relative to the
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Figure 13. Special case of an elastically mounted XY cylinder where fNX = 2fNY . Response
data and Lissajous figures are shown for m∗ = 4.28. The synchronized response comprises a
very narrow initial branch (I), an upper branch (U) with a large streamwise amplitude and a
lower branch (L). The free stream for the Lissajous figures flows to the right. The phase θ is
shown for the upper and lower branches only. Re = 5300 at peak amplitude, (m∗+CA)ζ =0.021.

transverse motion, as seen in the Lissajous figures. The lower branch is very periodic,
and has a small amount of streamwise motion (A∗

X ∼ 0.1).
In the upper branch, the phase θ between the transverse and streamwise vibration,

shown in figure 13(c), is between −30◦ and 100◦, corresponding to the body moving
upstream at its transverse peaks, the same qualitative behaviour as the freely
rising cylinder (θ ∼ 45◦). The Lissajous figures for these two cases are compared
in figures 10(b) and 10(c). In these Lissajous plots, the elastically mounted response
was chosen where CEA = −0.48, which is expected to be equivalent to an unrestrained
body with m∗ =0.48, and which is similar to the case of the rising cylinder (m∗ = 0.45).
The overall character of the motion for the rising body and the elastically mounted
cylinder are quite similar.

By evaluating CEA at each point in the synchronized response, we may evaluate a
critical mass for an XY cylinder. As shown in figure 14, CEA decreases throughout the
upper branch, and reaches a maximum negative value for the synchronized regime in
the lower branch. This value of CEA is roughly constant throughout the lower branch,
giving m∗

crit = [−CEA]max = 0.57 for Re ∼ 5500–7000. The prediction of the critical mass
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Figure 14. Values of CEA for a cylinder with fNX = 2fNY . The maximum negative
value of CEA, corresponding to periodic vibration, occurs in the lower branch, yielding
m∗

crit = [−CEA]max ≈ 0.57, in good agreement with the critical mass measured for a freely
rising cylinder, m∗

crit = 0.545. �, elastically mounted cylinder, periodic vibration; ×, elastically
mounted cylinder, desynchronized motion; �, �, freely rising cylinders, D =1.91 cm and
D = 2.54 cm, CEA = −m∗.

from the case of fNX/fNY =2 agrees reasonably well with the value measured from
the rising cylinder, m∗

crit = 0.545 (Re =5000), and also with the experiments of Dahl
et al. (2006), from whose data we may compute the value m∗

crit =[−CEAY ]max = 0.57
for a cylinder with fNX/fNY = 1.9 at higher Reynolds number (Re =38 000).

Using the calculated values of CEA and the corresponding response measurements
for fNX/fNY =2, we may predict the motion of freely rising cylinders with mass
ratios m∗ = −CEA. From the amplitude measurements shown in figure 15, it is evident
that the critical mass is predicted quite well. Interestingly, the trend found in the
elastically mounted experiments is for the amplitude to decrease as mass is reduced,
which is contrary to what one might imagine for bodies becoming very light. We may
also use the response data to predict the XY dynamics of unrestrained bodies. These
dynamics for ‘equivalent’ rising cylinders, whose mass ratios are given by m∗ = −CEA,
are presented as Lissajous figures for several cases in figure 16.

The predictions of the motion of a freely rising cylinder described here were made
using an elastically mounted system whose natural frequencies are fNX = 2fNY . But is
it possible that we could find another natural frequency ratio that would also predict
the dynamics of an unrestrained body? In general, the relationship between CEAX

and CEAY for a system with an arbitrary ratio of natural frequencies is given by

CEAX =
1

4

(
fNX

fNY

)2

CEAY −
[
1 − 1

4

(
fNX

fNY

)2
]

m∗, (6.2)

which may be derived from (6.1). Equation (6.2) will only satisfy the requirement for
an unrestrained system, that CEAX = CEAY , when fNX/fNY = 2. Thus, we see that the
case of a system with fNX/fNY = 2 is a special one, which is uniquely able to predict
the response of a freely rising cylinder and the critical mass for an XY system.
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Figure 15. Predictions of amplitude for a freely rising cylinder using response data for an
elastically mounted XY system with fNX = 2fNY . The amplitude is plotted for each point in the
upper and lower branches where CEA is negative, corresponding to a rising cylinder with mass
m∗ = −CEA. �, predictions from the elastically mounted response; �, �, measured amplitude
of freely rising cylinders, D = 1.91 cm and D = 2.54 cm.

7. Concluding remarks
Our original intent with this work was to investigate the existence of a critical

mass for an elastically mounted cylinder with both transverse and streamwise d.o.f.,
by removing the spring restraints. However, such a study is not possible using
conventional elastically mounted bodies, because the freedom to allow unrestrained
motion in the streamwise direction would result in the body being carried away
downstream by the flow! It turns out that a solution to this problem, which was
considered initially, relevant to restrained vertically mounted cylinders, is to recognize
that a freely rising or falling horizontal body is directly equivalent to a system having
two d.o.f., with zero damping and spring stiffness. Of course, the fact that a rising
body has no damping or stiffness, in itself, is a trivial statement, but here it allows
us to connect the body of work on rising and falling bodies to elastically restrained
systems, in particular enabling direct measurement of critical mass for restrained
bodies.

In contrast with the case of a cylinder constrained to vibrate only in the transverse
direction, the existence of a critical mass for an elastically mounted cylinder with two
d.o.f. (and with the same natural frequency in both X and Y directions, fNX = fNY ),
cannot be predicted from response data from a single experiment at one mass ratio.
This difficulty arises from the ability of streamwise vibration to yield different response
branch shapes as the mass ratio is varied, even if the mass-damping parameter is kept
constant.

The study of Horowitz & Williamson (2006) presented brief results directly related
to the present work. The principal points stated in that paper, contained in a special
issue related to a conference, are that there exists a critical mass of m∗

crit =0.545, and
that below this mass, the body vibrates vigorously as it rises, generating a 2P mode
of vortex formation. In the present work, we discuss the fact that this value of critical
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Figure 16. XY dynamics for ‘equivalent’ rising cylinders. The dynamics in these Lissajous
figures for an elastically mounted system, with fNX = 2fNY , are expected to occur for rising
cylinders, whose mass is given by m∗ = −CEA. (a) m∗ =0.57, (b) m∗ = 0.48 and (c) m∗ = 0.06.

mass is quite similar to the value measured when an elastically mounted cylinder
is constrained to move only transverse to the flow (at the same Reynolds number),
namely m∗

crit =0.4, despite the presence of the significant streamwise motion for the
rising body. The similarity in critical mass is related to the fact that we find direct
similarities of the vortex wake configurations (the 2P mode), as well as similar vortex
strengths, amplitudes and frequencies of body motion, which all lead to comparable
values of the effective added mass (CEA), and thereby to comparable critical masses
for the two cases.

It should also be noted that the vortex formation is quite sensitive to the phase
between streamwise and transverse motion, even for small streamwise amplitudes. In
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the case of the rising cylinder, the phase of streamwise motion (θ = 45◦), illustrated
by the Lissajous figures, appears to induce the 2P mode (in preference to the 2S or
2T modes). Such a phase angle exhibits an upstream movement when the body is at
the transverse extrema, and represents a different mode than is found in any previous
two degree-of-freedom system.

In this paper, we consider the existence of a periodic vibration mode for a freely
rising cylinder, and deduce that it is caused by the fact that the 2P mode yields an
effective added mass less than zero (CEA < 0). If the vortex pattern had been the 2S
or the 2T mode, found in other more restrained VIV studies, we would find CEA > 0,
and vibration for such a freely rising or falling body would not ensue (since it would
be associated with a negative mass). This follows from the frequency equation for a
freely rising body, which states that m∗ = −CEA. The above results suggest that, out
of our set of previous VIV modes {2S, 2P, 2T}, the 2P mode of vortex formation is
the only vortex mode capable of causing vortex-induced vibration for a rising body!
As stated earlier in the paper, this does not preclude the existence of a mode, as yet
undiscovered, causing vibrations of a freely rising cylinder.

Finally, we recognize that a two degree-of-freedom elastically mounted cylinder
system can be devised where the effective added mass (CEA) in the X and Y directions
is precisely the same, meaning that, in the case where the springs are removed,
the mass of the body is the same in the streamwise and transverse directions. This
is obviously a condition that one has in a freely rising body. The only possible
two degree-of-freedom elastically mounted cylinder system, which can be used to
predict the dynamics of rising bodies, is one for which the natural frequencies in the
streamwise (fNX ) and transverse (fNY ) directions are related by fNX =2fNY . Such
an arrangement may seem clear in retrospect, but it was not obvious at the outset
that standard experiments, with equal orthogonal natural frequencies, would not be
able to properly predict the critical mass, or the dynamics of a freely rising–falling
cylinder.

Implementing such an elastic system, we are actually able to predict vibration
amplitudes and critical mass (m∗

crit = 0.57) for a freely rising cylinder in reasonable
agreement with direct measurements for such a rising body. We also predict the
Lissajous figures representing the streamwise–transverse vibrations for a rising body
with very small mass ratios (down to m∗ = 0.06), which are unobtainable from our
direct measurements. In this work, we find a critical ‘relative density’ for rising
cylinders, which is consistent with predictions from elastically mounted experiments.
Numerically, this critical mass is found to be 0.545, as mentioned earlier, and falls into
the same regime as those values found for other VIV systems; for example, for rising
spheres (m∗

crit ≈ 0.6); for pivoted cylinders (m∗
crit ≈ 0.5); Y only cylinders (m∗

crit ≈ 0.54);
XY cylinders (m∗

crit ≈ 0.57). Although there is a distinct numerical similarity, it is not
yet clear why these critical masses are so similar. We reiterate that critical mass is
determined by the flow-induced forces, dictated by the complex vortex dynamics,
so that understanding the clear similarity in critical mass across diverse systems
requires consideration of the vortex forces, which are elusive to simple analytical
expressions.

Appendix. Prediction of forces on a rising cylinder
The displacement of the rising cylinder contains components at frequencies higher

than the fundamental, f . The effect of these higher frequency components on the
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force may be analysed by expressing the displacement using a Fourier series

y(t) =

N∑
n=1

An sin(nωt + Φn), (A 1)

where Φn is the phase between the nth component (at frequency = nf ) and the
fundamental component (frequency = f ) obtained from a Fourier decomposition. For
the component at the fundamental frequency, we have Φ1 ≡ 0. The force may be
written as

FY (t) =

N∑
n=1

FYn0 sin(nωt + φn + Φn), (A 2)

where φn is the phase between the force and displacement of the nth component.
Taking advantage of orthogonality, (A 1) and (A 2) may be used to derive N-amplitude
equations and N-frequency equations of the form

A∗
n =

1

4π3

CYn sinφn

(m ∗ +CA)ζ

(
U ∗

nf ∗

)2

nf ∗, (A 3)

nf ∗ =

√
m∗ + CA

m∗ + CEAn

, (A 4)

where

CEAn =
CYn cosφn

2π3A∗
n

(
U ∗

nf ∗

)2

. (A 5)

Equations (A 3) and (A 5) were used for the first nine components of the
displacement (from f to 9f ) to calculate the transverse force on the rising cylinder,
shown in figure 12(b). This analysis was performed on an average cycle of motion,
calculated from all individual cycles for each of the experimental runs performed for
m∗ =0.45 (a total of 22 cycles). The spectrum of the displacement in figure 12(c) shows
that the two most significant frequencies are the f and 3f components, which appear
prominently in the time history of the force in figure 12(b). Such a 3f component
has been found for other XY systems undergoing vibration (Jauvtis & Williamson
2004; Dahl et al. 2007). The 3f component of force is of comparable magnitude to
the force at the fundamental frequency. However, it is the value of the effective added
mass based on the fundamental frequency component of the force that will yield the
critical mass, and the jump to large-amplitude vibration.
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